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Under the assumptions that no two sp3 carbon atoms are adjacent in the end product of bromination of a fullerene
and that the residual π system is a closed shell, graph theory predicts maximum stoichiometries C60Br24, C70Br26,
C76Br28, C84Br32 and rules out all but 58 of the ~10 23 addition patterns conceivable for these molecules.

Introduction
In the search for simple rationalisations of fullerene reactivity,
several concepts taken from graph theory have proved useful.
One is the independence number, which gives a mathematical
embodiment to the chemical notion of steric strain. The
independence number, I(G), of a graph G is the maximum
number of its vertices that can be marked simultaneously such
that no two marked vertices are adjacent.

For icosahedral C60 the independence number is 24, and this
fact has been used 1 to rationalise the structure of the end
product of the bromination of [60]fullerene, i.e. C60Br24.

2 The
argument goes as follows. Assume that the cage takes up the
maximum number of exo addends compatible with two rules,
one steric and one electronic. Rule (i): no two brominated
carbon atoms should be adjacent. Rule (ii): the final addition
pattern should contain only closed-shell π subsystems. In more
formal mathematical language, rules (i) and (ii) are obeyed by
those maximum independent sets (if any such exist) in which all
components of the graph of unmarked vertices are even in size
and have adjacency spectra split into equal halves across a
non-zero gap.

In C60 the independence number I(C60) = 24 predicts the
stoichiometry, and of the ~3 × 1014 conceivable isomers of
C60Br24 only 1085 are maximum independent sets. Of these, all
but one are radicals. In fact, for C60, a weaker version of rule (ii)
would achieve the same reduction: we can simply forbid iso-
lated bare carbon atoms (unmarked vertices). The sole survivor
under the simultaneous action of rule (i) and of either version
of rule (ii) is the experimental Th isomer, in which the 36 bare
carbon centres are arranged as 18 isolated double bonds.1

The present work is concerned with the extension of these
very simple rules to the prediction of the so-far uncharacterised
products of bromination of higher fullerenes. A new invariant
related to the independence number is required.

Closed-shell independence number
The essential difference between C60 and the higher fullerenes
investigated here is that for the latter, all maximum independent
sets are radical in character. Achievement of a closed π shell
therefore requires either termination of the process of addition
at a smaller number of addends or introduction of adjacencies
between addend sites. We investigate here the consequences of
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rigid adherence to the non-adjacency rule: addition is supposed
to take place under rules (i) and (ii), to achieve the largest
number of non-adjacent addends for which there is at least one
pattern where a closed shell is possible for every isolated π sub-
system. Crane 3 has also considered the consequences of addi-
tion under these two constraints. This closed-shell independence
number, I �(G), is clearly an integer, characteristic of the
molecular graph, obeying eqn. (1).

I �(G) ≤ I(G) (1)

The numbers I �(G) and I(G) can be equal (as for C20 and
icosahedral C60) but I(G) can be odd whereas I �(G) cannot. A
trivial upper bound on I(G), following from the individual
independence numbers of 2 for each of the 12 pentagons and
3 for the n/2 � 10 hexagons of a general n-atom fullerene, is
given by eqn. (2).

I(G) ≤ n/2 � 2 G = fullerene (2)

In the special case of isolated-pentagon fullerenes that are
also leapfrog fullerenes Cn, where the set of faces derived from
those of the parent Cn/3 cage (i.e. the Clar faces 4) span the verti-
ces of the larger cage, the bound is tighter [eqn. (3)]. Here we
have used the observation that if the vertices of G are spanned
by a set of disjoint subgraphs Gi, then I(G) can be at most the
sum of the individual independence numbers I(Gi), a bound
which may or may not be sharp, depending on the way the
subgraphs fit together. Thus, I(C60) = 24 follows from the fact
that the truncated icosahedron consists of 12 disjoint penta-
gons, each of independence number 2. C20, the smallest general
fullerene, realises the bound of eqn. (2); C60, the smallest leap-
frog and smallest isolated-pentagon fullerene, realises the
bound of eqn. (3). Non-leapfrog isolated-pentagon fullerenes
with I(G) > n/2 � 6 are also known, e.g. Ih C80 with I(G) = 36.

I(G) ≤ n/2 � 6 G = leapfrog fullerene (3)

These results also place bounds on the closed-shell independ-
ence number, by eqn. (1), but a more detailed argument gives
a better bound on I �(G) for fullerenes (and other trivalent
graphs). Let m sites of an n-atom fullerene be occupied by
addends. In a pattern that obeys rules (i) and (ii), every empty
site is neighbour to at most 2 addend sites. If ai is the number of
empty sites adjacent to exactly i addend sites, counting sites
gives eqn. (4) and counting empty–occupied edges gives eqn.
(5). Thus, in such a pattern, combination of eqns. (4) and (5)
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a0 � a1 � a2 = n � m (4)

a1 � 2a2 = 3m (5)

yields eqn. (6) and identification of m with I �(G) gives an upper

m = 2n/5 � a1/5 � 2a0/5 = a1/3 � 2a2/3 (6)

bound for the closed-shell independence number [eqn. (7)]

I �(G) ≤ 2n/5 G = trivalent graph (7)

which improves on eqns. (1) and (2) for n > 20 and on eqns. (1)
and (3) for n > 60. The equality found by Crane [eqn. (3) of ref.
3] is effectively a statement that this bound would be sharp for
cases where all sp2 sites are in isolated double bonds.

Both C20 and C60 have a maximum independent pattern in
which all bare carbon sites are paired in localised double bonds,
and for these patterns a0 = a1 = 0, a2 = 3m/2. In fact, for C20 the
localised pattern is the only maximum independent set. For C60,
there is just one localised pattern out of 1085. Maximum
independent sets always have a0 = 0, but are not generally
closed-shell and hence may have a3 ≠ 0, for which the appro-
priate versions of eqns. (4) and (5) give eqn. (8) and the bound

I(G) = n/4 � a2/4 � a3/2 =
2n/5 � a1/5 � a3/5 = n/2 � a1/3 � a2/6 (8)

n/4 ≤ I(G) ≤ n/2 for any trivalent graph. The trivial upper
bound of n/2 is obtained from partitioning the vertices into
disjoint pairs along the n/2 double-bond edges of a Kekulé
structure, of which any trivalent graph has at least three. It is
easily improved for fullerenes, as shown by eqns. (2) and (3). In
an addition pattern that violates rule (ii), the maximum possible
number of odd components for a given number of empty sites
would be when every one is an isolated vertex, and so a3 is
trivially bounded by n � m, but since any pentagon contains
at least two adjacent unmarked sites, a better bound is
a3 ≤ n � m � 24 for an isolated-pentagon fullerene.

An extreme example of radical character in a maximum
independent set is given by the graphite sheet. As Fig. 1 shows,
choice of the marked vertices in one Clar hexagon is enough to
fix the unique pattern on the whole plane. The marked set
includes half of the vertices and every excluded vertex is also
isolated. A similar radical pattern occurs for Clar polyhedra
composed of squares and hexagons. The graphite example
suggests that for very large fullerenes, the difference between
I(G) and I �(G) will become a linear function of n so that closed-
shell coverage will fall increasingly short of the maximum.

Given the definition, we are now ready to see how the closed-
shell independence number performs for some specific cases of
higher fullerenes. As there is already a closed-shell maximum
independent set for C60, the first case to explore is C70, the
second isolated-pentagon fullerene. The experimentally charac-
terised isomers of C76 and C84 are also considered, with a view
to predicting the maximum extent of bromination in each case.

Computational strategy
Three general strategies for obtaining non-radical isomers when
I(G) ≠ I �(G) can be envisaged: (a) add further Br atoms to sat-
urate the radical patches; (b) stop the addition at a number
short of I(G) that allows all subsystems to have a closed shell;
(c) move Br atoms around within the set so as to make all
patches even. Strategy (a) would introduce at least 24 adjacen-
cies of addend sites for C70 (see below). Strategy (c) generally
also produces a high number of adjacencies, and by itself it
cannot help when I(G) is odd, as in C70 (see below). Though a
small number of adjacencies may be tolerated when coverage is

small, as in C60Br6, or when the atoms are rigorously pyramidal
as in the claimed C20Br20 molecule 5 (but see ref. 6), adjacency
will become increasingly disfavoured for larger fullerenes and
higher coverage. It is found that C60Br60, for example, is not
even a local minimum on the potential surface at some levels of
theory;6 the single adjacency in C60Br6 disappears on addition
of further bromine 7 to give C60Br8 and of course C60Br24.

Only option (b) of backtracking to reach I �(G) addends is
compatible with rigorous exclusion of adjacencies. A computer
program was written to generate independent sets of even size
I(G), I(G) � 1, I(G) � 2 . . . and to filter out those with odd
components or with even components with open π shells in
Hückel theory, thus successively testing the possible values for
I �(G). The technique adopted for C70 and larger cases was to
split the molecule into hemispherical halves, build independent
sets on each and combine them with elimination of any non-
independent patterns thereby generated. Cases with internal
odd components could be removed before combination,
reducing the computational effort. The test for radical character
was performed in two stages: (i) addition patterns with at least
one odd component were eliminated; (ii) all non-trivial, all-even
components were tested for zero HOMO–LUMO gap.

It should be noted that the number of candidate patterns
increases rapidly with the distance from I(G), as not only all
ancestors of the maximum independent sets are under con-
sideration, but also many sets that are independent on some
smaller number of vertices but would meet a dead end before
the full number of I(G) addends. For ease of coding, projection
of symmetry-distinct solutions was carried out only after the
generation and filtering steps, as the total numbers of patterns
involved were still manageable. More economical procedures
could be designed. The final set of isomers is lexicographically
ordered according to the locations of addends in the appropri-
ate IUPAC numbering scheme.8

Fig. 1 The unique maximum independent set of graphite is con-
structed from one of the three Clar coverings of the sheet (a). Assign-
ment of three marked vertices to each Clar hexagon gives the maximum
independent set and forces the pattern in Clar neighbours (b). Thus the
disposition of marked vertices in hexagon A determines their positions
in B, which fix those in C, and so on as shown by the arrows. The final
pattern (c) is unique to translation and rotation and has a radical site on
every other position.
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Results
(i) C70Brx

The independence number of the D5h experimental isomer of
[70]fullerene is I(C70) = 29. This follows from the fact that all
vertices of the graph are covered exactly once by a disjoint set
of twelve pentagons and five equatorial pairs (see Fig. 2); I(C70)
is hence at most (12 × 2) � (5 × 1) = 29, and as patterns with
29 non-adjacent vertices are readily found, I(C70) is exactly 29.
Hence, any maximum independent set of C70 contains odd
components and is therefore radical. Computer enumeration
and construction of the maximum independent sets yields 2972
symmetry-distinct isomers of C70Br29 (118 Cs, all others of C1

symmetry). These are disqualified under rule (ii) by the presence
of 11 to 17 odd patches, and every one of the 2972 patterns
includes at least eight isolated empty sites.

It follows from eqn. (7) that I � (C70) ≤ 28. By the exhaustive
approach outlined above it was established that all independent
sets of size 28 on C70 are also radical, but that ten distinct
closed-shell patterns (7 C1, 2 C2 and 1 Cs) can be constructed
with 26 independent marked vertices. Thus I �(C70) = 26. The
ten are illustrated as Schlegel diagrams in Fig. 3. The same ten
structures are identified by Crane in his computer search for
maximally non-adjacent, closed-shell isomers of C70X26.

3 They
all have a similar make-up, with localised double-bond pairs
constituting the bulk of the bare-carbon patches. No remaining
π subsystems contain more than six atoms.

(ii) C76Brx

The experimental D2 isolated-pentagon isomer of [76]fuller-
ene has I(C76) = 32, as demonstrated by its decomposition into
twelve pentagons, two paths of length six and two isolated
pairs (Fig. 2). Computer search yields 8677 symmetry-distinct
maximum independent sets (8651 C1 and 26 C2), all of radical
character, with 12 to 20 odd components, and each with at
least ten isolated bare carbons. Although the 2n/5 bound gives
I �(C76) ≤ 30, the computer check again finds the true value to
be smaller by two, at I �(C76) = 28. A total of 36 patterns obey-

Fig. 2 Independence numbers for four higher fullerenes. The illus-
trated decompositions into components (bold lines) are spanning sets,
i.e. they cover each vertex exactly once. For C70, C76 and C84 : 22, the
components are twelve pentagons (P5 = 12) plus pr paths of length r.
C84 : 23 is composed of six pyracylene units (Py = 6). Each set generates
a bound on the independence number I(G) = 2P5 � 3p6 � 2p4 �
p2 � 6Py that turns out to be sharp in all four cases. The numbers 1, 2, 3
indicate the start of the vertex spiral that is the basis of the IUPAC
numbering scheme for fullerene derivatives.8

ing rule (ii) are found (33 C1, 2 C2, 1 D2), again with the bare
carbons arranged predominantly as localised pairs (see Fig. 4).

(iii) C84Brx

The main C84 fraction extracted from Krätschmer–Huffman
soot is a 2 :1 mixture of isomers, which from analysis of 13C
NMR spectra and total-energy calculations have been
assigned 9 as 84 :22 (D2) and 84 :23 (D2d) in the spiral sequence 10

of 24 isolated-pentagon fullerenes. Both have I(G) = 36, as
shown by their decompositions (Fig. 2) into pentagons and
paths of lengths two or four (D2) or six pyracylene fragments
(D2d). The maximum independent sets for both isomers are,
however, all radical in character. 5150 sets (5052 C1, 94 C2 and 4
D2) found for the D2 isomer have 16 to 24 odd components, at
least 14 of which are isolated bare carbon atoms in any one
case. The D2d isomer yields 2553 maximum independent sets
(2528 C1, 21 C2, 1 D2 and 3 S4) with the same range of
odd components and the same minimum of 14 isolated bare
carbons. Eqn. (7) gives a bound of 32 on I �(C84) which is in fact
realised for both fullerenes: I �(84 :22) = I �(84 :23) = 32. The
eleven 32-vertex independent sets (seven for 84 :22 and four for
84 :23) that are compatible with the closed-shell rule (ii) are
illustrated in Fig. 5; all have 18 non-conjugated double bonds
and four butadiene chains.

Discussion
Table 1 summarises the results of this purely graph-theoretical
survey of the maximum extent of addition of bulky ligands.
C60 turns out to be a special case in which the unmodified
independence number is achievable as a closed π shell. In the
higher fullerenes, addition is limited, not by steric crowding, but
by the impossibility of achieving a closed shell at the highest

Fig. 3 The complete set of isomers of C70Br26 obeying no-adjacency
and closed-shell rules. Isomers are lexicographically ordered according
to the locations of addends in the IUPAC numbering scheme 8 (see also
Fig. 2) and are labelled by symmetry, MNDO and AM1 energies (in kJ
mol�1) relative to the isomer of lowest energy (no. 8).
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Table 1 Reduction of the isomer problem by application of no-adjacency and closed-shell rules a

n 60 70 76 84 :22 84 :23

I(G)
NI

NI(G)

I �(G)
NI �

NI �(G)

24
~3.0 × 1014

1085
24
~3.0 × 1014

1

29
~2.0 × 1018

2972
26
~5.6 × 1016

10

32
~6.7 × 1020

8677
28
~1.2 × 1020

36

36
~1.8 × 1023

5150
32
~3.9 × 1022

7

36
~9.0 × 1022

2553
32
~2.0 × 1022

4
a n is the number of atoms in the fullerene cage, I(G) is the independence number of the graph, NI the total number of distinct addition patterns of
stoichiometry CnBrI(G) and NI(G) is the number of these that are maximum independent sets. I �(G) is the closed-shell independence number, NI � the
total number of isomers with stoichiometry CnBrI� and NI�(G) is the final size of the subset that remains after application of rules (i) and (ii). Exact
totals for NI and NI�, broken down by point group, are given in refs. 11–13.

Fig. 4 The complete set of isomers of C76Br28 obeying no-adjacency and closed-shell rules. Isomers are ordered and labelled as in Fig. 3. MNDO and
AM1 energies (in kJ mol�1) are relative to the isomer of lowest energy (no. 19). Isomers 19 and 20 are isoenergetic within the precision of the
methods.

coverage. In all cases, the non-adjacency rule is a powerful con-
straint on possible addition patterns, reducing the set of iso-
mers under consideration by many orders of magnitude from
the huge number that are theoretically possible;11–13 further
insistence on a closed-shell configuration is an increasingly
severe additional constraint, cutting the number of candidates
down to tens in the cases we have examined.

It remains to check whether the isomers predicted by these
rules for maximum coverage are in fact of low energy, and
so likely to be thermodynamically favoured. Calculations on
C70Br26, C76Br28 and C84Br32 with all three semi-empirical
MOPAC methods 14 give relatively narrow spreads of energy.
Whilst it is dangerous to rely too heavily on the exact ordering
of isomers from such methods, it is perhaps worth noting that
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the AM1 and MNDO methods agree on the identity of the
most stable isomer in all four cases. The PM3 Hamiltonian has
a documented problem of spurious attraction between non-
bonded bromine atoms,15–17 but still gives approximately the
same range and rough order of isomers. The overall spread of
energies within the sets favoured by the two rules is small (~100
kJ mol�1 for C76Br26, for example), and sample calculations on
molecules with radical patterns or bromine adjacencies indicate
large energy penalties for stepping outside the set.

The main result of the present investigation is that the limit of
coverage for bromination has been established. If more than
I �(G) addends are attached to a fullerene, then the product
must have sp3 adjacencies, or an open π shell, or both. Patterns
with fewer than I �(G) added bromine atoms may be kinetically
or even thermodynamically favoured, but I �(G) is a limit to the
addition process under the stated assumptions. The predictions

Fig. 5 The complete set of isomers of C84Br32 based on isomers 84 :22
(D2) and 84 :23 (D2d) and obeying no-adjacency and closed-shell rules.
Isomers are ordered and labelled (as in Fig. 3) in two sequences, with
symmetries (g :h) of both the addition pattern (g) and parent fullerene
(h) given in each case. MNDO and AM1 energies (in kJ mol�1) are
relative to the isomer of lowest energy in each sequence.

do not depend on the precise chemical identity of the addend,
only on the existence of a significant steric requirement; for
example, C60Cl6 and C60Br6 are isostructural 18 and chlorination
of C60 terminates at 24 addends 19 (but see ref. 20) yielding a
product apparently isostructural 19 with C60Br24. A crucial test
of the relevance of the present purely mathematical model and
its restrictions will come with the experimental characterisation
of addition products for the higher fullerenes.
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